178 research outputs found

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene

    Get PDF
    Background Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies. Objective Determine, based on correction of cellular phenotypes, whether XRCC2 is a FA gene. Methods Cells (900677) from a previously identified patient with biallelic mutation of XRCC2, among other mutations, were genetically complemented with wild-type XRCC2. Results Wild-type XRCC2 corrects each of three phenotypes characteristic of FA cells, all related to the repair of DNA interstrand crosslinks, including increased sensitivity to mitomycin C (MMC), chromosome breakage, and G2-M accumulation in the cell cycle. Further, the p.R215X mutant of XRCC2, which is harbored by the patient, is unstable. This provides an explanation for the pathogenesis of this mutant, as does the fact that 900677 cells have reduced levels of other proteins in the XRCC2-RAD51B-C-D complex. Also, FANCD2 monoubiquitination and foci formation, but not assembly of RAD51 foci, are normal in 900677 cells. Thus, XRCC2 acts late in the FA-BRCA pathway as also suggested by hypersensitivity of 900677 cells to ionizing radiation. These cells also share milder sensitivities toward olaparib and formaldehyde with certain other FA cells. Conclusions XRCC2/FANCU is a FA gene, as is another RAD51 paralog gene, RAD51C/FANCO. Notably, similar to a subset of FA genes that act downstream of FANCD2, biallelic mutation of XRCC2/FANCU has not been associated with bone marrow failure. Taken together, our results yield important insights into phenotypes related to FA and its genetic origins

    Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma

    Get PDF
    Multiple myeloma (MM) is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in MM cell lines and primary bone marrow (BM) cells from patients. CD166+ MM cells homed more efficiently than CD166− cells to the BM of engrafted immunodeficient NSG mice. CD166 silencing in MM cells enabled longer survival, a smaller tumor burden and less osteolytic lesions, as compared to mice bearing control cells. CD166 deficiency in MM cell lines or CD138+ BM cells from MM patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Further, CD166 deficiency in MM cells also reduced formation of osteolytic disease in vivo after intra-tibial engraftment. Mechanistic investigation revealed that CD166 expression in MM cells inhibited osteoblastogenesis of BM-derived osteoblast progenitors by suppressing RUNX2 gene expression. Conversely, CD166 expression in MM cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in MM cell homing to the BM and MM progression, rationalizing its further study as a candidate therapeutic target for MM treatment

    Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER); Next Generation EU; EUROFANCOLEN); Comunidad de Madrid (AvanCell, B2017/BMD-3692); ICREA-Academia program.Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage-associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D-NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D-NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA

    Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling

    Get PDF
    PURPOSE: Head and neck squamous cell carcinoma (HNSCC) remains a devastating disease, and Fanconi anemia (FA) gene mutations and transcriptional repression are common. Invasive tumor behavior is associated with poor outcome, but relevant pathways triggering invasion are poorly understood. There is a significant need to improve our understanding of genetic pathways and molecular mechanisms driving advanced tumor phenotypes, to develop tailored therapies. Here we sought to investigate the phenotypic and molecular consequences of FA pathway loss in HNSCC cells. EXPERIMENTAL DESIGN: Using sporadic HNSCC cell lines with and without FA gene knockdown, we sought to characterize the phenotypic and molecular consequences of FA deficiency. FA pathway inactivation was confirmed by the detection of classic hallmarks of FA following exposure to DNA cross-linkers. Cells were subjected to RNA sequencing with qRT-PCR validation, followed by cellular adhesion and invasion assays in the presence and absence of DNA-dependent protein kinase (DNA-PK) and Rac1 inhibitors. RESULTS: We demonstrate that FA loss in HNSCC cells leads to cytoskeletal reorganization and invasive tumor cell behavior in the absence of proliferative gains. We further demonstrate that cellular invasion following FA loss is mediated, at least in part, through NHEJ-associated DNA-PK and downstream Rac1 GTPase activity. CONCLUSIONS: These findings demonstrate that FA loss stimulates HNSCC cell motility and invasion, and implicate a targetable DNA-PK/Rac1 signaling axis in advanced tumor phenotypes

    ROLE OF CD166 IN MULTIPLE MYELOMA CELL HOMING TO THE BONE MARROW MICROENVIRONMENT AND DISEASE PROGRESSION

    Get PDF
    poster abstractMultiple myeloma (MM) is a plasma cell malignancy characterized by multiple lytic lesions throughout the skeleton, suggesting that trafficking of MM cells from the bone marrow (BM) and lodgment of these cells at secondary sites is important in disease progression. CD38+CD138- MM cells were previously characterized as putative MM stem cells (MMSC, Cancer Res. 2008; 68(1):190-7.). We analyzed CD38+CD138- cells contained within the MM cell line H929 and determined that a fraction of these cells (29.9%±1.4%) expresses CD166. CD166 is a member of the immunoglobulin superfamily capable of mediating both homophilic and heterophilic (CD6) interactions and has been shown to enhance metastasis and invasion in several tumors including breast cancer and melanoma. Studies from our laboratory suggest that CD38+CD138-CD166+ MM cells possess many functional properties commonly associated with MMSC including cell cycle quiescence, maintenance and propagation of daughter cells on a stromal substrate and gene expression profile. We hypothesized that CD166 promotes MM cell trafficking to the BM and is critical for disease progression. To test this hypothesis, H929-GFP myeloma cells were injected intravenously into NSG mice and GFP cells were recovered from the BM 14hr later. While only 3.3%±1.5% of total H929-GFP cells express the CD38+CD138- phenotype, the frequency of CD38+CD138- cells contained in BM-homed H929-GFP cells was significantly higher (53.4%±3.7%, n=3, p<0.01), suggesting a preferential homing of MMSC to the marrow microenvironment. Interestingly, whereas only 29.9%±1.4% of CD38+CD138- cells expressed CD166 prior to injection, 84.1%±10.8% of BM-homed H929-GFP CD38+CD138- cells expressed CD166 (n=3, p<0.01), suggesting that CD166 plays a critical role in directing homing of MM cells to the BM. Next, CD166 expression on H929-GFP cells was knocked down (KD) with shRNA in order to examine if reduced CD166 expression inhibit the homing of MM cells to the BM. The number of BM-homed GFP cells was significantly decreased for CD166KD cells (5658±904, n=6) compared to mock control (8551±848, n=6; p<0.05). Interestingly, cells in which suppression of CD166 expression was not achieved with shRNA homed preferentially to the BM (4.3%±0.3% CD166+cells in CD166 KD H929-GFP before injection versus 29.3%±3.6% in BM-homed GFP cells). Then we compared the progression of MM in NSG mice initiated with mock control or CD166 KD H929-GFP cells. Disease progression in mice receiving control cells was more rapid compared to that in mice receiving CD166KD cells as evidenced by serum levels of human IgA (kappa) at 4 weeks posttransplantation (240.5±67.1ng/ml versus 45.1±33.0ng/ml, n=3; p<0.05). We next examined the potential role of CD166 in osteolytic lesions using a novel Ex Vivo Organ Culture Assay (EVOCA) in which MM cells are co-cultured over calvariae from 10d-old pups for 7 days creating an in vitro 3D system for the interaction of MM cells with bone microenvironment. Data from EVOCA with H929 cells showed that bone osteolytic lesions are substantially reduced when CD166 is absent on either MM (CD166- fraction) or osteoblast lineage cells (calvariae from CD166-/- mice). Furthermore, co-culturing CD166+ or CD166- H929 cells with bone marrow stromal cells (BMSC) from WT or CD166-/- mice revealed that mRNA levels of receptor activator of NF-κB ligand (RANKL) are decreased when CD166 is absent on either MM or stromal cells while mRNA levels of osteoprotegerin (OPG), an important inhibitor of osteoclastogenesis, are not altered. This resulted in decreased RANKL/OPG ratios in cultures containing a CD166- component suggesting reduced MM-induced osteoclastogenesis in the absence of CD166. Interestingly, levels of M-CSF and IL-6 were similar in all these cultures suggesting that loss of CD166 may mediate suppression of osteolytic lesions through the downregulation of RANKL. Together, these results suggest that CD166 plays an important role in homing and retention of MM cells in the BM and promotes MM disease progression as well as bone-lytic disease and that CD166 may serve as a therapeutic target in the treatment of MM

    Dynamic Bioluminescence Imaging: Development of a Physiological Pharmacokinetic Model of Tumor Metabolism

    Get PDF
    poster abstractBioluminescence (BLI) is a technology which has been studied extensively across multiple genera for more than 90 years. Over this period, BLI has emerged as a powerful noninvasive tool to study tumor localization, growth, and response to therapy due to the relatively recent technological advancements in instrumentation and molecular biology. This technology takes advantage of molecular transfection of the luciferase (LUC) gene from the North American firefly, Photinus pyralis, into human cancer cells, which are then implanted (ectopic or orthotopic) in mice. Oxidation of the exogenously administered substrate D-luciferin by the LUC gene product results in emission of green-yellow photons which are then evaluated in the context of tumor growth and development. Despite the more than 30 years of characterization, there exists a fundamental gap in our knowledge of the underlying PK/PD processes which are at the heart of nearly all BLI interpretation, and has lead to a dogmatic adherence in the literature to numerical methods which are at best simple corollaries of tumor metabolic rate. In an attempt to fill this void, this paper will present a new PK/PD model which takes advantage of the temporal nature of both substrate transport and light evolution. In addition, we will compare these results to traditional non-model based analyses and show how they differ. Lastly we will present OATS (One at A Time) Parameter Sensitivity and Monte Carlo Noise Analysis to characterize the numerical stability and sensitivity of this new model

    Myeloid antigens in childhood lymphoblastic leukemia:clinical data point to regulation of CD66c distinct from other myeloid antigens

    Get PDF
    BACKGROUND: Aberrant expression of myeloid antigens (MyAgs) on acute lymphoblastic leukemia (ALL) cells is a well-documented phenomenon, although its regulating mechanisms are unclear. MyAgs in ALL are interpreted e.g. as hallmarks of early differentiation stage and/or lineage indecisiveness. Granulocytic marker CD66c – Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is aberrantly expressed on ALL with strong correlation to genotype (negative in TEL/AML1 and MLL/AF4, positive in BCR/ABL and hyperdiploid cases). METHODS: In a cohort of 365 consecutively diagnosed Czech B-precursor ALL patients, we analyze distribution of MyAg+ cases and mutual relationship among CD13, CD15, CD33, CD65 and CD66c. The most frequent MyAg (CD66c) is studied further regarding its stability from diagnosis to relapse, prognostic significance and regulation of surface expression. For the latter, flow cytometry, Western blot and quantitative RT-PCR on sorted cells is used. RESULTS: We show CD66c is expressed in 43% patients, which is more frequent than other MyAgs studied. In addition, CD66c expression negatively correlates with CD13 (p < 0.0001), CD33 (p = 0.002) and/or CD65 (p = 0.029). Our data show that different myeloid antigens often differ in biological importance, which may be obscured by combining them into "MyAg positive ALL". We show that unlike other MyAgs, CD66c expression is not shifted from the onset of ALL to relapse (n = 39, time to relapse 0.3–5.3 years). Although opposite has previously been suggested, we show that CEACAM6 transcription is invariably followed by surface expression (by quantitative RT-PCR on sorted cells) and that malignant cells containing CD66c in cytoplasm without surface expression are not found by flow cytometry nor by Western blot in vivo. We report no prognostic significance of CD66c, globally or separately in genotype subsets of B-precursor ALL, nor an association with known risk factors (n = 254). CONCLUSION: In contrast to general notion we show that different MyAgs in lymphoblastic leukemia represent different biological circumstances. We chose the most frequent and tightly genotype-associated MyAg CD66c to show its stabile expression in patients from diagnosis to relapse, which differs from what is known on the other MyAgs. Surface expression of CD66c is regulated at the gene transcription level, in contrast to previous reports
    • …
    corecore